
AABBTree Documentation
Release 2.5.0

Kenneth Hart

Jun 13, 2020

Contents

1 Installation 1

2 Example 2

3 API 2

4 Contributing 6

5 License and Copyright Notice 6

Repository Documentation PyPI

AABBTree is a pure Python implementation of a static d-dimensional axis aligned bounding box (AABB) tree. It is
inspired by Introductory Guide to AABB Tree Collision Detection from Azure From The Trenches.

Fig. 1: Left: An AABB tree, leaves numbered by insertion order. Right: The AABBs and their bounding boxes.

1 Installation

AABBTree is available through PyPI and can be installed by running:

1

https://travis-ci.org/kip-hart/AABBTree
https://coveralls.io/github/kip-hart/AABBTree?branch=master
https://github.com/kip-hart/AABBTree/blob/master/LICENSE.rst
https://github.com/kip-hart/AABBTree
https://github.com/kip-hart/AABBTree
https://aabbtree.readthedocs.io
https://aabbtree.readthedocs.io
https://pypi.org/project/aabbtree/
https://pypi.org/project/aabbtree/
https://www.azurefromthetrenches.com/introductory-guide-to-aabb-tree-collision-detection/


pip install aabbtree

To test that the package installed properly, run:

python -c "import aabbtree"

Alternatively, the package can be installed from source by downloading the latest release from the AABBTree reposi-
tory on GitHub. Extract the source and, from the top-level directory, run:

pip install -e .

The --user flag may be needed, depending on permissions.

2 Example

The following example shows how to build an AABB tree and test for overlap:

>>> from aabbtree import AABB
>>> from aabbtree import AABBTree
>>> tree = AABBTree()
>>> aabb1 = AABB([(0, 0), (0, 0)])
>>> aabb2 = AABB([(-1, 1), (-1, 1)])
>>> aabb3 = AABB([(4, 5), (2, 3)])
>>> tree.add(aabb1, 'box 1')
>>> tree.does_overlap(aabb2)
True
>>> tree.overlap_values(aabb2)
['box 1']
>>> tree.does_overlap(aabb3)
False
>>> tree.add(aabb3)
>>> print(tree)
AABB: [(0, 5), (0, 3)]
Value: None
Left:

AABB: [(0, 0), (0, 0)]
Value: box 1
Left: None
Right: None

Right:
AABB: [(4, 5), (2, 3)]
Value: None
Left: None
Right: None

3 API

class aabbtree.AABB(limits=None)
Bases: object

Axis-aligned bounding box (AABB)

The AABB is a d-dimensional box.

2

https://github.com/kip-hart/AABBTree
https://github.com/kip-hart/AABBTree


Parameters limits (iterable, optional) – The limits of the box. These should be speci-
fied in the following manner:

limits = [(xmin, xmax),
(ymin, ymax),
(zmin, zmax),
...]

The default value is None.

classmethod merge(aabb1, aabb2)
Merge AABB

Find the AABB of the union of AABBs.

Parameters

• aabb1 (AABB) – An AABB

• aabb2 (AABB) – An AABB

Returns An AABB that contains both of the inputs

Return type AABB

overlap_volume(aabb)
Determine volume of overlap between AABBs

Let
(︁
𝑙
(1)
𝑖 , 𝑢

(1)
𝑖

)︁
be the i-th dimension lower and upper bounds for AABB 1, and let

(︁
𝑙
(2)
𝑖 , 𝑢

(2)
𝑖

)︁
be the

lower and upper bounds for AABB 2. The volume of overlap is:

𝑉 =

𝑛∏︁
𝑖=1

max
(︁
0,min

(︁
𝑢
(1)
𝑖 , 𝑢

(2)
𝑖

)︁
− max

(︁
𝑙
(1)
𝑖 , 𝑙

(2)
𝑖

)︁)︁
Parameters aabb (AABB) – The AABB to calculate for overlap volume

Returns Volume of overlap

Return type float

overlaps(aabb)
Determine if two AABBs overlap

Parameters aabb (AABB) – The AABB to check for overlap

Returns Flag set to true if the two AABBs overlap

Return type bool

corners
corner points of AABB

Type list

perimeter
perimeter of AABB

The perimeter 𝑝𝑛 of an AABB with side lengths 𝑙1 . . . 𝑙𝑛 is:

𝑝1 = 0

𝑝2 = 2(𝑙1 + 𝑙2)

𝑝3 = 2(𝑙1𝑙2 + 𝑙2𝑙3 + 𝑙1𝑙3)

𝑝𝑛 = 2

𝑛∑︁
𝑖=1

𝑛∏︁
𝑗=1̸=𝑖

𝑙𝑗

3



Type float

volume
volume of AABB

The volume 𝑉𝑛 of an AABB with side lengths 𝑙1 . . . 𝑙𝑛 is:

𝑉1 = 𝑙1

𝑉2 = 𝑙1𝑙2

𝑉3 = 𝑙1𝑙2𝑙3

𝑉𝑛 =

𝑛∏︁
𝑖=1

𝑙𝑖

Type float

class aabbtree.AABBTree(aabb=AABB(None), value=None, left=None, right=None)
Bases: object

Static AABB Tree

An AABB tree where the bounds of each AABB do not change.

Parameters

• aabb (AABB) – An AABB

• value – The value associated with the AABB

• left (AABBTree, optional) – The left branch of the tree

• right (AABBTree, optional) – The right branch of the tree

add(aabb, value=None, method=’volume’)
Add node to tree

This function inserts a node into the AABB tree. The function chooses one of three options for adding the
node to the tree:

• Add it to the left side

• Add it to the right side

• Become a leaf node

The cost of each option is calculated based on the method keyword, and the option with the lowest cost is
chosen.

Parameters

• aabb (AABB) – The AABB to add.

• value – The value associated with the AABB. Defaults to None.

• method (str) – The method for deciding how to build the tree. Should be one of the
following:

– volume

volume Costs based on total bounding volume and overlap volume

Let 𝑝 denote the parent, 𝑙 denote the left child, 𝑟 denote the right child, 𝑥 denote the AABB
to add, and 𝑉 be the volume of an AABB. The three options to add 𝑥 to the left branch,

4



add it to the right branch, or create a new parent. The cost associated with each of these
options is:

𝐶(add left) = 𝑉 (𝑝 ∪ 𝑥)− 𝑉 (𝑝) + 𝑉 (𝑙 ∪ 𝑥)− 𝑉 (𝑙) + 𝑉 ((𝑙 ∪ 𝑥) ∩ 𝑟)

𝐶(add right) = 𝑉 (𝑝 ∪ 𝑥)− 𝑉 (𝑝) + 𝑉 (𝑟 ∪ 𝑥)− 𝑉 (𝑟) + 𝑉 ((𝑟 ∪ 𝑥) ∩ 𝑙)

𝐶(create parent) = 𝑉 (𝑝 ∪ 𝑥) + 𝑉 (𝑝 ∩ 𝑥)

In the add-left cost, the term 𝑉 (𝑏 ∪ 𝑥)− 𝑉 (𝑏) is the increase in parent bounding volume.
The cost 𝑉 (𝑙 ∪ 𝑥) − 𝑉 (𝑙) is the increase in left child bounding volume. The last term,
𝑉 ((𝑙 ∪ 𝑥) ∩ 𝑟) is the overlapping volume between children if 𝑥 were added to the left
child. The cost to create a new parent is the bounding volume of the parent and 𝑥 plus
their overlap volume.

This cost function includes the increases in bounding volumes and the amount of overlap-
two values a balanced AABB tree should minimize. The cost function suits the author’s
current needs, though other applications may seek different tree properties. Please visit
the AABBTree repository if interested in implementing another cost function.

does_overlap(aabb, method=’DFS’)
Check for overlap

This function checks if the limits overlap any leaf nodes in the tree. It returns true if there is an overlap.

Parameters

• aabb (AABB) – The AABB to check.

• method (str) – {‘DFS’|’BFS’} Method for traversing the tree. Setting ‘DFS’ performs
a depth-first search and ‘BFS’ performs a breadth-first search. Defaults to ‘DFS’.

Returns True if overlaps with a leaf node of tree.

Return type bool

overlap_aabbs(aabb, method=’DFS’)
Get overlapping AABBs

This function gets each overlapping AABB.

Parameters

• aabb (AABB) – The AABB to check.

• method (str) – {‘DFS’|’BFS’} Method for traversing the tree. Setting ‘DFS’ performs
a depth-first search and ‘BFS’ performs a breadth-first search. Defaults to ‘DFS’.

Returns AABB objects in AABBTree that overlap with the input.

Return type list

overlap_values(aabb, method=’DFS’)
Get values of overlapping AABBs

This function gets the value field of each overlapping AABB.

Parameters

• aabb (AABB) – The AABB to check.

• method (str) – {‘DFS’|’BFS’} Method for traversing the tree. Setting ‘DFS’ performs
a depth-first search and ‘BFS’ performs a breadth-first search. Defaults to ‘DFS’.

Returns Value fields of each node that overlaps.

Return type list

5

https://github.com/kip-hart/AABBTree


depth
Depth of the tree

Type int

is_leaf
returns True if is leaf node

Type bool

4 Contributing

Contributions to the project are welcome. Please visit the AABBTree repository to clone the source files, create a pull
request, and submit issues.

5 License and Copyright Notice

Copyright © 2020, Georgia Tech Research Corporation

AABBTree is open source and freely available under the terms of the MIT license.

License

MIT License

Copyright (c) 2020 Georgia Tech Research Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

6

https://github.com/kip-hart/AABBTree

	Installation
	Example
	API
	Contributing
	License and Copyright Notice

