

AABBTree - Axis-Aligned Bounding Box Trees

[image: Continuous Integration] [https://github.com/kip-hart/AABBTree/actions]
[image: Coverage] [https://coveralls.io/github/kip-hart/AABBTree?branch=master]
[image: License] [https://github.com/kip-hart/AABBTree/blob/master/LICENSE.rst]

[image: CMAME DOI] [https://doi.org/10.1016/j.cma.2020.113242]

[image: GitHub] [https://github.com/kip-hart/AABBTree] Repository [https://github.com/kip-hart/AABBTree]
[image: ReadTheDocs] [https://aabbtree.readthedocs.io] Documentation [https://aabbtree.readthedocs.io]
[image: PyPI] [https://pypi.org/project/aabbtree/] PyPI [https://pypi.org/project/aabbtree/]

AABBTree is a pure Python implementation of a static d-dimensional
axis aligned bounding box (AABB) tree. It is inspired by
Introductory Guide to AABB Tree Collision Detection [https://www.azurefromthetrenches.com/introductory-guide-to-aabb-tree-collision-detection/]
from Azure From The Trenches.

[image: AABB Tree]

Left: An AABB tree, leaves numbered by insertion order.
Right: The AABBs and their bounding boxes.

Installation

AABBTree is available through PyPI and can be installed by running:

pip install aabbtree

To test that the package installed properly, run:

python -c "import aabbtree"

Alternatively, the package can be installed from source by downloading the
latest release from the AABBTree repository [https://github.com/kip-hart/AABBTree] on GitHub. Extract the source
and, from the top-level directory, run:

pip install -e .

The --user flag may be needed, depending on permissions.

Example

The following example shows how to build an AABB tree and test for overlap:

>>> from aabbtree import AABB
>>> from aabbtree import AABBTree
>>> tree = AABBTree()
>>> aabb1 = AABB([(0, 0), (0, 0)])
>>> aabb2 = AABB([(-1, 1), (-1, 1)])
>>> aabb3 = AABB([(4, 5), (2, 3)])
>>> tree.add(aabb1, 'box 1')
>>> tree.does_overlap(aabb2)
True
>>> tree.overlap_values(aabb2)
['box 1']
>>> tree.does_overlap(aabb3)
False
>>> tree.add(aabb3)
>>> print(tree)
AABB: [(0, 5), (0, 3)]
Value: None
Left:
 AABB: [(0, 0), (0, 0)]
 Value: box 1
 Left: None
 Right: None
Right:
 AABB: [(4, 5), (2, 3)]
 Value: None
 Left: None
 Right: None

API

Class definitions and methods for the AABB and AABBTree.

	
class aabbtree.AABB(limits=None)[source]

	Bases: object

Axis-aligned bounding box (AABB)

The AABB is a d-dimensional box.

	Parameters

	limits (iterable, optional) – The limits of the box. These should be
specified in the following manner:

limits = [(xmin, xmax),
 (ymin, ymax),
 (zmin, zmax),
 ...]

The default value is None.

	
classmethod merge(aabb1, aabb2)[source]

	Merge AABB

Find the AABB of the union of AABBs.

	Parameters

	
	aabb1 (AABB) – An AABB

	aabb2 (AABB) – An AABB

	Returns

	An AABB that contains both of the inputs

	Return type

	AABB

	
overlap_volume(aabb)[source]

	Determine volume of overlap between AABBs

Let \(\left(l_i^{(1)}, u_i^{(1)}\right)\) be the i-th dimension
lower and upper bounds for AABB 1, and let
\(\left(l_i^{(2)}, u_i^{(2)}\right)\) be the lower and upper bounds
for AABB 2. The volume of overlap is:

\[V = \prod_{i=1}^n \text{max}\left(0,
 \text{min}\left(u_i^{(1)}, u_i^{(2)}\right) -
 \text{max}\left(l_i^{(1)}, l_i^{(2)}\right)
 \right)\]

	Parameters

	aabb (AABB) – The AABB to calculate for overlap volume

	Returns

	Volume of overlap

	Return type

	float

	
overlaps(aabb, closed=False)[source]

	Determine if two AABBs overlap

	Parameters

	
	aabb (AABB) – The AABB to check for overlap

	closed (bool) – Flag for closed overlap between AABBs. For the case
where one box is [-1, 0] and the other is [0, 0], the two boxes
are interecting if closed is set to True and they are not
intersecting if closed is set to False.

	Returns

	Flag set to true if the two AABBs overlap

	Return type

	bool

	
corners

	corner points of AABB

	Type

	list

	
perimeter

	perimeter of AABB

The perimeter \(p_n\) of an AABB with side lengths
\(l_1 \ldots l_n\) is:

\[\begin{split}p_1 &= 0 \\
p_2 &= 2 (l_1 + l_2) \\
p_3 &= 2 (l_1 l_2 + l_2 l_3 + l_1 l_3) \\
p_n &= 2 \sum_{i=1}^n \prod_{j=1\neq i}^n l_j\end{split}\]

	Type

	float

	
volume

	volume of AABB

The volume \(V_n\) of an AABB with side lengths
\(l_1 \ldots l_n\) is:

\[\begin{split}V_1 &= l_1 \\
V_2 &= l_1 l_2 \\
V_3 &= l_1 l_2 l_3 \\
V_n &= \prod_{i=1}^n l_i\end{split}\]

	Type

	float

	
class aabbtree.AABBTree(aabb=AABB(None), value=None, left=None, right=None)[source]

	Bases: object

Static AABB Tree

An AABB tree where the bounds of each AABB do not change.

	Parameters

	
	aabb (AABB) – An AABB

	value – The value associated with the AABB

	left (AABBTree, optional) – The left branch of the tree

	right (AABBTree, optional) – The right branch of the tree

	
add(aabb, value=None, method='volume')[source]

	Add node to tree

This function inserts a node into the AABB tree.
The function chooses one of three options for adding the node to
the tree:

	Add it to the left side

	Add it to the right side

	Become a leaf node

The cost of each option is calculated based on the method keyword,
and the option with the lowest cost is chosen.

	Parameters

	
	aabb (AABB) – The AABB to add.

	value – The value associated with the AABB. Defaults to None.

	method (str) – The method for deciding how to build the tree.
Should be one of the following:

	volume

volume
Costs based on total bounding volume and overlap volume

Let \(p\) denote the parent, \(l\) denote the left
child, \(r\) denote the right child, \(x\) denote
the AABB to add, and \(V\) be the volume of an AABB.
The three options to add \(x\) to the left branch, add it
to the right branch, or create a new parent.
The cost associated with each of these options is:

\[\begin{split}C(\text{add left}) &= V(p \cup x) - V(p) +
 V(l \cup x) - V(l) +
 V((l \cup x) \cap r) \\
C(\text{add right}) &= V(p \cup x) - V(p) +
 V(r \cup x) - V(r) +
 V((r \cup x) \cap l) \\
C(\text{create parent}) &= V(p \cup x) + V(p \cap x)\end{split}\]

In the add-left cost, the term \(V(b \cup x) - V(b)\) is
the increase in parent bounding volume. The cost
\(V(l \cup x) - V(l)\) is the increase in left child
bounding volume. The last term, \(V((l \cup x) \cap r)\)
is the overlapping volume between children if \(x\) were
added to the left child.
The cost to create a new parent is the bounding volume of the
parent and \(x\) plus their overlap volume.

This cost function includes the increases in bounding volumes
and the amount of overlap- two values a balanced AABB tree
should minimize. The cost function suits the author’s current
needs, though other applications may seek different tree
properties. Please visit the AABBTree repository [https://github.com/kip-hart/AABBTree] if
interested in implementing another cost function.

	
does_overlap(aabb, method='DFS', closed=False)[source]

	Check for overlap

This function checks if the limits overlap any leaf nodes in the tree.
It returns true if there is an overlap.

New in version 2.6.0

This method also supports overlap checks with another instance of the
AABBTree class.

	Parameters

	
	aabb (AABB or AABBTree) – The AABB or AABBTree to check.

	method (str) – {‘DFS’|’BFS’} Method for traversing the tree.
Setting ‘DFS’ performs a depth-first search and ‘BFS’ performs
a breadth-first search. Defaults to ‘DFS’.

	closed (bool) – Option to specify closed or open box intersection.
If open, there must be a non-zero amount of overlap. If closed,
boxes can be touching.

	Returns

	True if overlaps with a leaf node of tree.

	Return type

	bool

	
overlap_aabbs(aabb, method='DFS', closed=False, unique=True)[source]

	Get overlapping AABBs

This function gets each overlapping AABB.

New in version 2.6.0

This method also supports overlap checks with another instance of the
AABBTree class.

	Parameters

	
	aabb (AABB or AABBTree) – The AABB or AABBTree to check.

	method (str) – {‘DFS’|’BFS’} Method for traversing the tree.
Setting ‘DFS’ performs a depth-first search and ‘BFS’ performs
a breadth-first search. Defaults to ‘DFS’.

	closed (bool) – Option to specify closed or open box intersection.
If open, there must be a non-zero amount of overlap. If closed,
boxes can be touching.

unique (bool): Return only unique pairs. Defaults to True.

	Returns

	AABB objects in AABBTree that overlap with the input.

	Return type

	list

	
overlap_values(aabb, method='DFS', closed=False, unique=True)[source]

	Get values of overlapping AABBs

This function gets the value field of each overlapping AABB.

New in version 2.6.0

This method also supports overlap checks with another instance of the
AABBTree class.

	Parameters

	
	aabb (AABB or AABBTree) – The AABB or AABBTree to check.

	method (str) – {‘DFS’|’BFS’} Method for traversing the tree.
Setting ‘DFS’ performs a depth-first search and ‘BFS’ performs
a breadth-first search. Defaults to ‘DFS’.

	closed (bool) – Option to specify closed or open box intersection.
If open, there must be a non-zero amount of overlap. If closed,
boxes can be touching.

unique (bool): Return only unique pairs. Defaults to True.

	Returns

	Value fields of each node that overlaps.

	Return type

	list

	
depth

	Depth of the tree

	Type

	int

	
is_leaf

	returns True if is leaf node

	Type

	bool

Contributing

Contributions to the project are welcome.
Please visit the AABBTree repository [https://github.com/kip-hart/AABBTree] to clone the source files,
create a pull request, and submit issues.

Publication

If you use AABBTree in you work, please consider including this citation
in your bibliography:

K. A. Hart and J. J. Rimoli, Generation of statistically representative
microstructures with direct grain geomety control,
Computer Methods in Applied Mechanics and Engineering, 370 (2020), 113242.
(BibTeX [https://github.com/kip-hart/MicroStructPy/raw/master/docs/publications/cmame2020.bib])
(DOI [https://doi.org/10.1016/j.cma.2020.113242])

The incremental insertion method is discussed in section 2.2.2 of the paper.

License and Copyright Notice

Copyright © 2019-2021, Georgia Tech Research Corporation

AABBTree is open source and freely available under the terms of
the MIT license.

License

MIT License

Copyright (c) 2019-2021 Georgia Tech Research Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

API

Class definitions and methods for the AABB and AABBTree.

	
class aabbtree.AABB(limits=None)[source]

	Bases: object

Axis-aligned bounding box (AABB)

The AABB is a d-dimensional box.

	Parameters

	limits (iterable, optional) – The limits of the box. These should be
specified in the following manner:

limits = [(xmin, xmax),
 (ymin, ymax),
 (zmin, zmax),
 ...]

The default value is None.

	
classmethod merge(aabb1, aabb2)[source]

	Merge AABB

Find the AABB of the union of AABBs.

	Parameters

	
	aabb1 (AABB) – An AABB

	aabb2 (AABB) – An AABB

	Returns

	An AABB that contains both of the inputs

	Return type

	AABB

	
overlap_volume(aabb)[source]

	Determine volume of overlap between AABBs

Let \(\left(l_i^{(1)}, u_i^{(1)}\right)\) be the i-th dimension
lower and upper bounds for AABB 1, and let
\(\left(l_i^{(2)}, u_i^{(2)}\right)\) be the lower and upper bounds
for AABB 2. The volume of overlap is:

\[V = \prod_{i=1}^n \text{max}\left(0,
 \text{min}\left(u_i^{(1)}, u_i^{(2)}\right) -
 \text{max}\left(l_i^{(1)}, l_i^{(2)}\right)
 \right)\]

	Parameters

	aabb (AABB) – The AABB to calculate for overlap volume

	Returns

	Volume of overlap

	Return type

	float

	
overlaps(aabb, closed=False)[source]

	Determine if two AABBs overlap

	Parameters

	
	aabb (AABB) – The AABB to check for overlap

	closed (bool) – Flag for closed overlap between AABBs. For the case
where one box is [-1, 0] and the other is [0, 0], the two boxes
are interecting if closed is set to True and they are not
intersecting if closed is set to False.

	Returns

	Flag set to true if the two AABBs overlap

	Return type

	bool

	
corners

	corner points of AABB

	Type

	list

	
perimeter

	perimeter of AABB

The perimeter \(p_n\) of an AABB with side lengths
\(l_1 \ldots l_n\) is:

\[\begin{split}p_1 &= 0 \\
p_2 &= 2 (l_1 + l_2) \\
p_3 &= 2 (l_1 l_2 + l_2 l_3 + l_1 l_3) \\
p_n &= 2 \sum_{i=1}^n \prod_{j=1\neq i}^n l_j\end{split}\]

	Type

	float

	
volume

	volume of AABB

The volume \(V_n\) of an AABB with side lengths
\(l_1 \ldots l_n\) is:

\[\begin{split}V_1 &= l_1 \\
V_2 &= l_1 l_2 \\
V_3 &= l_1 l_2 l_3 \\
V_n &= \prod_{i=1}^n l_i\end{split}\]

	Type

	float

	
class aabbtree.AABBTree(aabb=AABB(None), value=None, left=None, right=None)[source]

	Bases: object

Static AABB Tree

An AABB tree where the bounds of each AABB do not change.

	Parameters

	
	aabb (AABB) – An AABB

	value – The value associated with the AABB

	left (AABBTree, optional) – The left branch of the tree

	right (AABBTree, optional) – The right branch of the tree

	
add(aabb, value=None, method='volume')[source]

	Add node to tree

This function inserts a node into the AABB tree.
The function chooses one of three options for adding the node to
the tree:

	Add it to the left side

	Add it to the right side

	Become a leaf node

The cost of each option is calculated based on the method keyword,
and the option with the lowest cost is chosen.

	Parameters

	
	aabb (AABB) – The AABB to add.

	value – The value associated with the AABB. Defaults to None.

	method (str) – The method for deciding how to build the tree.
Should be one of the following:

	volume

volume
Costs based on total bounding volume and overlap volume

Let \(p\) denote the parent, \(l\) denote the left
child, \(r\) denote the right child, \(x\) denote
the AABB to add, and \(V\) be the volume of an AABB.
The three options to add \(x\) to the left branch, add it
to the right branch, or create a new parent.
The cost associated with each of these options is:

\[\begin{split}C(\text{add left}) &= V(p \cup x) - V(p) +
 V(l \cup x) - V(l) +
 V((l \cup x) \cap r) \\
C(\text{add right}) &= V(p \cup x) - V(p) +
 V(r \cup x) - V(r) +
 V((r \cup x) \cap l) \\
C(\text{create parent}) &= V(p \cup x) + V(p \cap x)\end{split}\]

In the add-left cost, the term \(V(b \cup x) - V(b)\) is
the increase in parent bounding volume. The cost
\(V(l \cup x) - V(l)\) is the increase in left child
bounding volume. The last term, \(V((l \cup x) \cap r)\)
is the overlapping volume between children if \(x\) were
added to the left child.
The cost to create a new parent is the bounding volume of the
parent and \(x\) plus their overlap volume.

This cost function includes the increases in bounding volumes
and the amount of overlap- two values a balanced AABB tree
should minimize. The cost function suits the author’s current
needs, though other applications may seek different tree
properties. Please visit the AABBTree repository [https://github.com/kip-hart/AABBTree] if
interested in implementing another cost function.

	
does_overlap(aabb, method='DFS', closed=False)[source]

	Check for overlap

This function checks if the limits overlap any leaf nodes in the tree.
It returns true if there is an overlap.

New in version 2.6.0

This method also supports overlap checks with another instance of the
AABBTree class.

	Parameters

	
	aabb (AABB or AABBTree) – The AABB or AABBTree to check.

	method (str) – {‘DFS’|’BFS’} Method for traversing the tree.
Setting ‘DFS’ performs a depth-first search and ‘BFS’ performs
a breadth-first search. Defaults to ‘DFS’.

	closed (bool) – Option to specify closed or open box intersection.
If open, there must be a non-zero amount of overlap. If closed,
boxes can be touching.

	Returns

	True if overlaps with a leaf node of tree.

	Return type

	bool

	
overlap_aabbs(aabb, method='DFS', closed=False, unique=True)[source]

	Get overlapping AABBs

This function gets each overlapping AABB.

New in version 2.6.0

This method also supports overlap checks with another instance of the
AABBTree class.

	Parameters

	
	aabb (AABB or AABBTree) – The AABB or AABBTree to check.

	method (str) – {‘DFS’|’BFS’} Method for traversing the tree.
Setting ‘DFS’ performs a depth-first search and ‘BFS’ performs
a breadth-first search. Defaults to ‘DFS’.

	closed (bool) – Option to specify closed or open box intersection.
If open, there must be a non-zero amount of overlap. If closed,
boxes can be touching.

unique (bool): Return only unique pairs. Defaults to True.

	Returns

	AABB objects in AABBTree that overlap with the input.

	Return type

	list

	
overlap_values(aabb, method='DFS', closed=False, unique=True)[source]

	Get values of overlapping AABBs

This function gets the value field of each overlapping AABB.

New in version 2.6.0

This method also supports overlap checks with another instance of the
AABBTree class.

	Parameters

	
	aabb (AABB or AABBTree) – The AABB or AABBTree to check.

	method (str) – {‘DFS’|’BFS’} Method for traversing the tree.
Setting ‘DFS’ performs a depth-first search and ‘BFS’ performs
a breadth-first search. Defaults to ‘DFS’.

	closed (bool) – Option to specify closed or open box intersection.
If open, there must be a non-zero amount of overlap. If closed,
boxes can be touching.

unique (bool): Return only unique pairs. Defaults to True.

	Returns

	Value fields of each node that overlaps.

	Return type

	list

	
depth

	Depth of the tree

	Type

	int

	
is_leaf

	returns True if is leaf node

	Type

	bool

AABBTree - Axis-Aligned Bounding Box Trees

AABBTree is a pure Python implementation of a static d-dimensional
axis aligned bounding box (AABB) tree. It is inspired by
Introductory Guide to AABB Tree Collision Detection [https://www.azurefromthetrenches.com/introductory-guide-to-aabb-tree-collision-detection/]
from Azure From The Trenches.

[image: AABB Tree]

Left: An AABB tree, leaves numbered by insertion order.
Right: The AABBs and their bounding boxes.

Installation

AABBTree is available through PyPI and can be installed by running:

pip install aabbtree

To test that the package installed properly, run:

python -c "import aabbtree"

Alternatively, the package can be installed from source by downloading the
latest release from the AABBTree repository [https://github.com/kip-hart/AABBTree] on GitHub. Extract the source
and, from the top-level directory, run:

pip install -e .

The --user flag may be needed, depending on permissions.

Example

The following example shows how to build an AABB tree and test for overlap:

>>> from aabbtree import AABB
>>> from aabbtree import AABBTree
>>> tree = AABBTree()
>>> aabb1 = AABB([(0, 0), (0, 0)])
>>> aabb2 = AABB([(-1, 1), (-1, 1)])
>>> aabb3 = AABB([(4, 5), (2, 3)])
>>> tree.add(aabb1, 'box 1')
>>> tree.does_overlap(aabb2)
True
>>> tree.overlap_values(aabb2)
['box 1']
>>> tree.does_overlap(aabb3)
False
>>> tree.add(aabb3)
>>> print(tree)
AABB: [(0, 5), (0, 3)]
Value: None
Left:
 AABB: [(0, 0), (0, 0)]
 Value: box 1
 Left: None
 Right: None
Right:
 AABB: [(4, 5), (2, 3)]
 Value: None
 Left: None
 Right: None

API

Class definitions and methods for the AABB and AABBTree.

	
class aabbtree.AABB(limits=None)[source]

	Bases: object

Axis-aligned bounding box (AABB)

The AABB is a d-dimensional box.

	Parameters

	limits (iterable, optional) – The limits of the box. These should be
specified in the following manner:

limits = [(xmin, xmax),
 (ymin, ymax),
 (zmin, zmax),
 ...]

The default value is None.

	
classmethod merge(aabb1, aabb2)[source]

	Merge AABB

Find the AABB of the union of AABBs.

	Parameters

	
	aabb1 (AABB) – An AABB

	aabb2 (AABB) – An AABB

	Returns

	An AABB that contains both of the inputs

	Return type

	AABB

	
overlap_volume(aabb)[source]

	Determine volume of overlap between AABBs

Let \(\left(l_i^{(1)}, u_i^{(1)}\right)\) be the i-th dimension
lower and upper bounds for AABB 1, and let
\(\left(l_i^{(2)}, u_i^{(2)}\right)\) be the lower and upper bounds
for AABB 2. The volume of overlap is:

\[V = \prod_{i=1}^n \text{max}\left(0,
 \text{min}\left(u_i^{(1)}, u_i^{(2)}\right) -
 \text{max}\left(l_i^{(1)}, l_i^{(2)}\right)
 \right)\]

	Parameters

	aabb (AABB) – The AABB to calculate for overlap volume

	Returns

	Volume of overlap

	Return type

	float

	
overlaps(aabb, closed=False)[source]

	Determine if two AABBs overlap

	Parameters

	
	aabb (AABB) – The AABB to check for overlap

	closed (bool) – Flag for closed overlap between AABBs. For the case
where one box is [-1, 0] and the other is [0, 0], the two boxes
are interecting if closed is set to True and they are not
intersecting if closed is set to False.

	Returns

	Flag set to true if the two AABBs overlap

	Return type

	bool

	
corners

	corner points of AABB

	Type

	list

	
perimeter

	perimeter of AABB

The perimeter \(p_n\) of an AABB with side lengths
\(l_1 \ldots l_n\) is:

\[\begin{split}p_1 &= 0 \\
p_2 &= 2 (l_1 + l_2) \\
p_3 &= 2 (l_1 l_2 + l_2 l_3 + l_1 l_3) \\
p_n &= 2 \sum_{i=1}^n \prod_{j=1\neq i}^n l_j\end{split}\]

	Type

	float

	
volume

	volume of AABB

The volume \(V_n\) of an AABB with side lengths
\(l_1 \ldots l_n\) is:

\[\begin{split}V_1 &= l_1 \\
V_2 &= l_1 l_2 \\
V_3 &= l_1 l_2 l_3 \\
V_n &= \prod_{i=1}^n l_i\end{split}\]

	Type

	float

	
class aabbtree.AABBTree(aabb=AABB(None), value=None, left=None, right=None)[source]

	Bases: object

Static AABB Tree

An AABB tree where the bounds of each AABB do not change.

	Parameters

	
	aabb (AABB) – An AABB

	value – The value associated with the AABB

	left (AABBTree, optional) – The left branch of the tree

	right (AABBTree, optional) – The right branch of the tree

	
add(aabb, value=None, method='volume')[source]

	Add node to tree

This function inserts a node into the AABB tree.
The function chooses one of three options for adding the node to
the tree:

	Add it to the left side

	Add it to the right side

	Become a leaf node

The cost of each option is calculated based on the method keyword,
and the option with the lowest cost is chosen.

	Parameters

	
	aabb (AABB) – The AABB to add.

	value – The value associated with the AABB. Defaults to None.

	method (str) – The method for deciding how to build the tree.
Should be one of the following:

	volume

volume
Costs based on total bounding volume and overlap volume

Let \(p\) denote the parent, \(l\) denote the left
child, \(r\) denote the right child, \(x\) denote
the AABB to add, and \(V\) be the volume of an AABB.
The three options to add \(x\) to the left branch, add it
to the right branch, or create a new parent.
The cost associated with each of these options is:

\[\begin{split}C(\text{add left}) &= V(p \cup x) - V(p) +
 V(l \cup x) - V(l) +
 V((l \cup x) \cap r) \\
C(\text{add right}) &= V(p \cup x) - V(p) +
 V(r \cup x) - V(r) +
 V((r \cup x) \cap l) \\
C(\text{create parent}) &= V(p \cup x) + V(p \cap x)\end{split}\]

In the add-left cost, the term \(V(b \cup x) - V(b)\) is
the increase in parent bounding volume. The cost
\(V(l \cup x) - V(l)\) is the increase in left child
bounding volume. The last term, \(V((l \cup x) \cap r)\)
is the overlapping volume between children if \(x\) were
added to the left child.
The cost to create a new parent is the bounding volume of the
parent and \(x\) plus their overlap volume.

This cost function includes the increases in bounding volumes
and the amount of overlap- two values a balanced AABB tree
should minimize. The cost function suits the author’s current
needs, though other applications may seek different tree
properties. Please visit the AABBTree repository [https://github.com/kip-hart/AABBTree] if
interested in implementing another cost function.

	
does_overlap(aabb, method='DFS', closed=False)[source]

	Check for overlap

This function checks if the limits overlap any leaf nodes in the tree.
It returns true if there is an overlap.

New in version 2.6.0

This method also supports overlap checks with another instance of the
AABBTree class.

	Parameters

	
	aabb (AABB or AABBTree) – The AABB or AABBTree to check.

	method (str) – {‘DFS’|’BFS’} Method for traversing the tree.
Setting ‘DFS’ performs a depth-first search and ‘BFS’ performs
a breadth-first search. Defaults to ‘DFS’.

	closed (bool) – Option to specify closed or open box intersection.
If open, there must be a non-zero amount of overlap. If closed,
boxes can be touching.

	Returns

	True if overlaps with a leaf node of tree.

	Return type

	bool

	
overlap_aabbs(aabb, method='DFS', closed=False, unique=True)[source]

	Get overlapping AABBs

This function gets each overlapping AABB.

New in version 2.6.0

This method also supports overlap checks with another instance of the
AABBTree class.

	Parameters

	
	aabb (AABB or AABBTree) – The AABB or AABBTree to check.

	method (str) – {‘DFS’|’BFS’} Method for traversing the tree.
Setting ‘DFS’ performs a depth-first search and ‘BFS’ performs
a breadth-first search. Defaults to ‘DFS’.

	closed (bool) – Option to specify closed or open box intersection.
If open, there must be a non-zero amount of overlap. If closed,
boxes can be touching.

unique (bool): Return only unique pairs. Defaults to True.

	Returns

	AABB objects in AABBTree that overlap with the input.

	Return type

	list

	
overlap_values(aabb, method='DFS', closed=False, unique=True)[source]

	Get values of overlapping AABBs

This function gets the value field of each overlapping AABB.

New in version 2.6.0

This method also supports overlap checks with another instance of the
AABBTree class.

	Parameters

	
	aabb (AABB or AABBTree) – The AABB or AABBTree to check.

	method (str) – {‘DFS’|’BFS’} Method for traversing the tree.
Setting ‘DFS’ performs a depth-first search and ‘BFS’ performs
a breadth-first search. Defaults to ‘DFS’.

	closed (bool) – Option to specify closed or open box intersection.
If open, there must be a non-zero amount of overlap. If closed,
boxes can be touching.

unique (bool): Return only unique pairs. Defaults to True.

	Returns

	Value fields of each node that overlaps.

	Return type

	list

	
depth

	Depth of the tree

	Type

	int

	
is_leaf

	returns True if is leaf node

	Type

	bool

Contributing

Contributions to the project are welcome.
Please visit the AABBTree repository [https://github.com/kip-hart/AABBTree] to clone the source files,
create a pull request, and submit issues.

Publication

If you use AABBTree in you work, please consider including this citation
in your bibliography:

K. A. Hart and J. J. Rimoli, Generation of statistically representative
microstructures with direct grain geomety control,
Computer Methods in Applied Mechanics and Engineering, 370 (2020), 113242.
(BibTeX [https://github.com/kip-hart/MicroStructPy/raw/master/docs/publications/cmame2020.bib])
(DOI [https://doi.org/10.1016/j.cma.2020.113242])

The incremental insertion method is discussed in section 2.2.2 of the paper.

License and Copyright Notice

Copyright © 2019-2021, Georgia Tech Research Corporation

AABBTree is open source and freely available under the terms of
the MIT license.

License

MIT License

Copyright (c) 2019-2021 Georgia Tech Research Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Source code for aabbtree

"""Class definitions and methods for the AABB and AABBTree."""

from collections import deque

__all__ = ['AABB', 'AABBTree']
__author__ = 'Kenneth (Kip) Hart'

[docs]class AABB(object): # pylint: disable=useless-object-inheritance
 """Axis-aligned bounding box (AABB)

 The AABB is a d-dimensional box.

 Args:
 limits (iterable, optional): The limits of the box. These should be
 specified in the following manner::

 limits = [(xmin, xmax),
 (ymin, ymax),
 (zmin, zmax),
 ...]

 The default value is None.
 """
 def __init__(self, limits=None):
 if limits is not None:
 for lims in limits:
 if len(lims) != 2 or lims[0] > lims[1]:
 e_str = 'Limits not in (lower, upper) format: '
 e_str += str(lims)
 raise ValueError(e_str)

 self.limits = limits
 self._i = 0

 def __str__(self):
 return str(self.limits)

 def __repr__(self):
 return 'AABB(' + repr(self.limits) + ')'

 def __iter__(self):
 self._i = 0
 return self

 def __next__(self):
 if self._i < len(self):
 val = self.limits[self._i]
 self._i += 1
 return val
 raise StopIteration

 def next(self): # pragma: no cover
 """___next__ for Python 2"""
 return self.__next__()

 def __getitem__(self, key):
 return self.limits[key]

 def __len__(self):
 return len(self.limits)

 def __eq__(self, aabb):
 if not isinstance(aabb, AABB):
 return False

 if (self.limits is None) and (aabb.limits is None):
 return True
 if (self.limits is None) or (aabb.limits is None):
 return False
 if len(self.limits) != len(aabb.limits):
 return False

 for i, lims1 in enumerate(self.limits):
 lims2 = aabb[i]
 if (lims1[0] != lims2[0]) or (lims1[1] != lims2[1]):
 return False
 return True

 def __ne__(self, aabb):
 return not self.__eq__(aabb)

[docs] @classmethod
 def merge(cls, aabb1, aabb2):
 """Merge AABB

 Find the AABB of the union of AABBs.

 Args:
 aabb1 (AABB): An AABB
 aabb2 (AABB): An AABB

 Returns:
 AABB: An AABB that contains both of the inputs
 """
 if (aabb1.limits is None) and (aabb2.limits is None):
 return cls(None)
 if aabb1.limits is None:
 return cls(aabb2.limits)
 if aabb2.limits is None:
 return cls(aabb1.limits)

 if len(aabb1.limits) != len(aabb2.limits):
 e_str = 'AABBs of different dimensions: ' + str(len(aabb1))
 e_str += ' and ' + str(len(aabb2))
 raise ValueError(e_str)

 return cls([_merge(*lims) for lims in zip(aabb1.limits, aabb2.limits)])

 @property
 def perimeter(self):
 r"""float: perimeter of AABB

 The perimeter :math:`p_n` of an AABB with side lengths
 :math:`l_1 \ldots l_n` is:

 .. math::

 p_1 &= 0 \\
 p_2 &= 2 (l_1 + l_2) \\
 p_3 &= 2 (l_1 l_2 + l_2 l_3 + l_1 l_3) \\
 p_n &= 2 \sum_{i=1}^n \prod_{j=1\neq i}^n l_j

 """
 if len(self.limits) == 1:
 return 0

 perim = 0
 side_lens = [ub - lb for lb, ub in self.limits]
 n_dim = len(side_lens)
 for i in range(n_dim):
 p_edge = 1
 for j in range(n_dim):
 if j != i:
 p_edge *= side_lens[j]
 perim += p_edge
 return 2 * perim

 @property
 def volume(self):
 r"""float: volume of AABB

 The volume :math:`V_n` of an AABB with side lengths
 :math:`l_1 \ldots l_n` is:

 .. math::

 V_1 &= l_1 \\
 V_2 &= l_1 l_2 \\
 V_3 &= l_1 l_2 l_3 \\
 V_n &= \prod_{i=1}^n l_i

 """
 vol = 1
 for lower, upper in self.limits:
 vol *= upper - lower
 return vol

 @property
 def corners(self):
 """list: corner points of AABB"""

 n_dim = len(self.limits)
 fmt = '{:0' + str(n_dim) + 'b}'

 n_corners = 2 ** n_dim
 corners = []
 for i in range(n_corners):
 inds = [int(s) for s in fmt.format(i)] # convert i to binary list
 corner = [self.limits[d][ind] for d, ind in enumerate(inds)]
 corners.append(corner)
 return corners

[docs] def overlaps(self, aabb, closed=False):
 """Determine if two AABBs overlap

 Args:
 aabb (AABB): The AABB to check for overlap
 closed (bool): Flag for closed overlap between AABBs. For the case
 where one box is [-1, 0] and the other is [0, 0], the two boxes
 are interecting if closed is set to True and they are not
 intersecting if closed is set to False.

 Returns:
 bool: Flag set to true if the two AABBs overlap
 """
 if closed:
 return self._overlaps_closed(aabb)
 return self._overlaps_open(aabb)

 def _overlaps_open(self, aabb):
 if (self.limits is None) or (aabb.limits is None):
 return False

 for (min1, max1), (min2, max2) in zip(self.limits, aabb.limits):
 if min1 >= max2:
 return False
 if min2 >= max1:
 return False
 return True

 def _overlaps_closed(self, aabb):
 if (self.limits is None) or (aabb.limits is None):
 return False

 for (min1, max1), (min2, max2) in zip(self.limits, aabb.limits):
 if min1 > max2:
 return False
 if min2 > max1:
 return False
 return True

[docs] def overlap_volume(self, aabb):
 r"""Determine volume of overlap between AABBs

 Let :math:`\left(l_i^{(1)}, u_i^{(1)}\right)` be the i-th dimension
 lower and upper bounds for AABB 1, and let
 :math:`\left(l_i^{(2)}, u_i^{(2)}\right)` be the lower and upper bounds
 for AABB 2. The volume of overlap is:

 .. math::

 V = \prod_{i=1}^n \text{max}\left(0,
 \text{min}\left(u_i^{(1)}, u_i^{(2)}\right) -
 \text{max}\left(l_i^{(1)}, l_i^{(2)}\right)
 \right)

 Args:
 aabb (AABB): The AABB to calculate for overlap volume

 Returns:
 float: Volume of overlap
 """ # NOQA: E501

 volume = 1
 for (min1, max1), (min2, max2) in zip(self.limits, aabb.limits):
 overlap_min = max(min1, min2)
 overlap_max = min(max1, max2)
 if overlap_min >= overlap_max:
 return 0

 volume *= overlap_max - overlap_min
 return volume

[docs]class AABBTree(object): # pylint: disable=useless-object-inheritance
 """Static AABB Tree

 An AABB tree where the bounds of each AABB do not change.

 Args:
 aabb (AABB): An AABB
 value: The value associated with the AABB
 left (AABBTree, optional): The left branch of the tree
 right (AABBTree, optional): The right branch of the tree

 """ # NOQA: E501
 def __init__(self, aabb=AABB(), value=None, left=None, right=None):

 self.aabb = aabb
 self.value = value
 self.left = left
 self.right = right

 def __repr__(self):
 inp_strs = []
 if self.aabb != AABB():
 inp_strs.append('aabb=' + repr(self.aabb))

 if self.value is not None:
 inp_strs.append('value=' + repr(self.value))

 if self.left is not None:
 inp_strs.append('left=' + repr(self.left))

 if self.right is not None:
 inp_strs.append('right=' + repr(self.right))

 return 'AABBTree(' + ', '.join(inp_strs) + ')'

 def __str__(self, n=0):
 pre = n * ' '

 aabb_str = pre + 'AABB: '
 if self.aabb == AABB():
 aabb_str += 'None'
 else:
 aabb_str += str(self.aabb)

 value_str = pre + 'Value: ' + str(self.value)

 left_str = pre + 'Left:'
 if self.left is None:
 left_str += ' None'
 else:
 left_str += '\n' + self.left.__str__(n + 1)

 right_str = pre + 'Right:'
 if self.right is None:
 right_str += ' None'
 else:
 right_str += '\n' + self.right.__str__(n + 1)

 return '\n'.join([aabb_str, value_str, left_str, right_str])

 def __eq__(self, aabbtree):
 if not isinstance(aabbtree, AABBTree):
 return False

 if self.aabb != aabbtree.aabb:
 return False

 if self.is_leaf != aabbtree.is_leaf:
 return False

 return (self.left == aabbtree.left) and (self.right == aabbtree.right)

 def __ne__(self, aabbtree):
 return not self.__eq__(aabbtree)

 def __len__(self):
 if self.is_leaf:
 return int(self.aabb != AABB())
 return len(self.left) + len(self.right)

 @property
 def is_leaf(self):
 """bool: returns True if is leaf node"""
 return (self.left is None) and (self.right is None)

 @property
 def depth(self):
 """int: Depth of the tree"""
 if self.is_leaf:
 return 0
 return 1 + max(self.left.depth, self.right.depth)

[docs] def add(self, aabb, value=None, method='volume'):
 r"""Add node to tree

 This function inserts a node into the AABB tree.
 The function chooses one of three options for adding the node to
 the tree:

 * Add it to the left side
 * Add it to the right side
 * Become a leaf node

 The cost of each option is calculated based on the *method* keyword,
 and the option with the lowest cost is chosen.

 Args:
 aabb (AABB): The AABB to add.
 value: The value associated with the AABB. Defaults to None.
 method (str): The method for deciding how to build the tree.
 Should be one of the following:

 * volume

 volume
 Costs based on total bounding volume and overlap volume

 Let :math:`p` denote the parent, :math:`l` denote the left
 child, :math:`r` denote the right child, :math:`x` denote
 the AABB to add, and :math:`V` be the volume of an AABB.
 The three options to add :math:`x` to the left branch, add it
 to the right branch, or create a new parent.
 The cost associated with each of these options is:

 .. math::

 C(\text{add left}) &= V(p \cup x) - V(p) +
 V(l \cup x) - V(l) +
 V((l \cup x) \cap r) \\
 C(\text{add right}) &= V(p \cup x) - V(p) +
 V(r \cup x) - V(r) +
 V((r \cup x) \cap l) \\
 C(\text{create parent}) &= V(p \cup x) + V(p \cap x)

 In the add-left cost, the term :math:`V(b \cup x) - V(b)` is
 the increase in parent bounding volume. The cost
 :math:`V(l \cup x) - V(l)` is the increase in left child
 bounding volume. The last term, :math:`V((l \cup x) \cap r)`
 is the overlapping volume between children if :math:`x` were
 added to the left child.
 The cost to create a new parent is the bounding volume of the
 parent and :math:`x` plus their overlap volume.

 This cost function includes the increases in bounding volumes
 and the amount of overlap- two values a balanced AABB tree
 should minimize. The cost function suits the author's current
 needs, though other applications may seek different tree
 properties. Please visit the `AABBTree repository`_ if
 interested in implementing another cost function.

 .. _`AABBTree repository`: https://github.com/kip-hart/AABBTree

 """ # NOQA: E501
 if self.aabb == AABB():
 self.aabb = aabb
 self.value = value

 elif self.is_leaf:
 self.left = AABBTree(self.aabb, value=self.value, left=self.left, right=self.right)
 self.right = AABBTree(aabb, value)

 self.aabb = AABB.merge(self.aabb, aabb)
 self.value = None
 else:
 if method == 'volume':
 # Define merged AABBs
 branch_merge = AABB.merge(self.aabb, aabb)
 left_merge = AABB.merge(self.left.aabb, aabb)
 right_merge = AABB.merge(self.right.aabb, aabb)

 # Calculate the change in the sum of the bounding volumes
 branch_cost = branch_merge.volume

 left_cost = branch_merge.volume - self.aabb.volume
 left_cost += left_merge.volume - self.left.aabb.volume

 right_cost = branch_merge.volume - self.aabb.volume
 right_cost += right_merge.volume - self.right.aabb.volume

 # Calculate amount of overlap
 branch_olap_cost = self.aabb.overlap_volume(aabb)
 left_olap_cost = left_merge.overlap_volume(self.right.aabb)
 right_olap_cost = right_merge.overlap_volume(self.left.aabb)

 # Calculate total cost
 branch_cost += branch_olap_cost
 left_cost += left_olap_cost
 right_cost += right_olap_cost
 else:
 raise ValueError('Unrecognized method: ' + str(method))

 if branch_cost < left_cost and branch_cost < right_cost:
 self.left = AABBTree(self.aabb, value=self.value, left=self.left, right=self.right)
 self.right = AABBTree(aabb, value)
 self.value = None
 elif left_cost < right_cost:
 self.left.add(aabb, value)
 else:
 self.right.add(aabb, value)
 self.aabb = AABB.merge(self.left.aabb, self.right.aabb)

[docs] def does_overlap(self, aabb, method='DFS', closed=False):
 """Check for overlap

 This function checks if the limits overlap any leaf nodes in the tree.
 It returns true if there is an overlap.

 New in version 2.6.0

 This method also supports overlap checks with another instance of the
 AABBTree class.

 Args:
 aabb (AABB or AABBTree): The AABB or AABBTree to check.
 method (str): {'DFS'|'BFS'} Method for traversing the tree.
 Setting 'DFS' performs a depth-first search and 'BFS' performs
 a breadth-first search. Defaults to 'DFS'.
 closed (bool): Option to specify closed or open box intersection.
 If open, there must be a non-zero amount of overlap. If closed,
 boxes can be touching.

 Returns:
 bool: True if overlaps with a leaf node of tree.
 """

 return len(_overlap_pairs(self, aabb, method, True, closed)) > 0

[docs] def overlap_aabbs(self, aabb, method='DFS', closed=False, unique=True):
 """Get overlapping AABBs

 This function gets each overlapping AABB.

 New in version 2.6.0

 This method also supports overlap checks with another instance of the
 AABBTree class.

 Args:
 aabb (AABB or AABBTree): The AABB or AABBTree to check.
 method (str): {'DFS'|'BFS'} Method for traversing the tree.
 Setting 'DFS' performs a depth-first search and 'BFS' performs
 a breadth-first search. Defaults to 'DFS'.
 closed (bool): Option to specify closed or open box intersection.
 If open, there must be a non-zero amount of overlap. If closed,
 boxes can be touching.
 unique (bool): Return only unique pairs. Defaults to True.

 Returns:
 list: AABB objects in AABBTree that overlap with the input.
 """
 pairs = _overlap_pairs(self, aabb, method, closed=closed,
 unique=unique)
 if len(pairs) == 0:
 return []
 boxes, _ = zip(*pairs)
 return list(boxes)

[docs] def overlap_values(self, aabb, method='DFS', closed=False, unique=True):
 """Get values of overlapping AABBs

 This function gets the value field of each overlapping AABB.

 New in version 2.6.0

 This method also supports overlap checks with another instance of the
 AABBTree class.

 Args:
 aabb (AABB or AABBTree): The AABB or AABBTree to check.
 method (str): {'DFS'|'BFS'} Method for traversing the tree.
 Setting 'DFS' performs a depth-first search and 'BFS' performs
 a breadth-first search. Defaults to 'DFS'.
 closed (bool): Option to specify closed or open box intersection.
 If open, there must be a non-zero amount of overlap. If closed,
 boxes can be touching.
 unique (bool): Return only unique pairs. Defaults to True.

 Returns:
 list: Value fields of each node that overlaps.
 """
 pairs = _overlap_pairs(self, aabb, method, closed=closed,
 unique=unique)
 if len(pairs) == 0:
 return []
 _, values = zip(*pairs)
 return list(values)

def _merge(lims1, lims2):
 lower = min(lims1[0], lims2[0])
 upper = max(lims1[1], lims2[1])

 return (lower, upper)

def _overlap_pairs(in_tree, aabb, method='DFS', halt=False, closed=False,
 unique=True):
 """Get overlapping AABBs and values in (AABB, value) pairs

 New in version 2.6.0

 This function gets each overlapping AABB and its value.

 Args:
 in_tree: The AABBTree to compare with.
 aabb (AABB or AABBTree): The AABB or AABBTree to check.
 method (str): {'DFS'|'BFS'} Method for traversing the tree.
 Setting 'DFS' performs a depth-first search and 'BFS' performs
 a breadth-first search. Defaults to 'DFS'.
 halt (bool): Return the list immediately once a pair has been
 added.
 closed (bool): Check for closed box intersection. Defaults to False.
 unique (bool): Return only unique pairs. Defaults to True.

 Returns:
 list: (AABB, value) pairs in AABBTree that overlap with the input.
 """
 if isinstance(aabb, AABB):
 tree = AABBTree(aabb=aabb)
 else:
 tree = aabb

 if method == 'DFS':
 pairs = _overlap_dfs(in_tree, tree, halt, closed)

 elif method == 'BFS':
 pairs = _overlap_bfs(in_tree, tree, halt, closed)
 else:
 e_str = "method should be 'DFS' or 'BFS', not " + str(method)
 raise ValueError(e_str)

 if len(pairs) < 2 or not unique:
 return pairs
 return _unique_pairs(pairs)

def _overlap_dfs(in_tree, tree, halt, closed):
 pairs = []

 if in_tree.is_leaf:
 in_branches = [in_tree]
 else:
 in_branches = [in_tree.left, in_tree.right]

 if tree.is_leaf:
 tree_branches = [tree]
 else:
 tree_branches = [tree.left, tree.right]

 if not in_tree.aabb.overlaps(tree.aabb, closed):
 return pairs

 if in_tree.is_leaf and tree.is_leaf:
 pairs.append((in_tree.aabb, in_tree.value))
 return pairs

 for in_branch in in_branches:
 for tree_branch in tree_branches:
 o_pairs = _overlap_dfs(in_branch, tree_branch, halt, closed)
 pairs.extend(o_pairs)
 if halt and len(pairs) > 0:
 return pairs
 return pairs

def _overlap_bfs(in_tree, tree, halt, closed):
 pairs = []
 queue = deque()
 queue.append((in_tree, tree))
 while len(queue) > 0:
 s_node, t_node = queue.popleft()
 if s_node.aabb.overlaps(t_node.aabb, closed):
 if s_node.is_leaf and t_node.is_leaf:
 pairs.append((s_node.aabb, s_node.value))
 if halt:
 return pairs
 elif s_node.is_leaf:
 queue.append((s_node, t_node.left))
 queue.append((s_node, t_node.right))
 elif t_node.is_leaf:
 queue.append((s_node.left, t_node))
 queue.append((s_node.right, t_node))
 else:
 queue.append((s_node.left, t_node.left))
 queue.append((s_node.left, t_node.right))
 queue.append((s_node.right, t_node.left))
 queue.append((s_node.right, t_node.right))
 return pairs

def _unique_pairs(pairs):
 boxes, _ = zip(*pairs)
 u_pairs = [p for i, p in enumerate(pairs) if p[0] not in boxes[:i]]
 return u_pairs

 All modules for which code is available

	aabbtree

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/diagram.png
/\ S
o

..................................

_static/down-pressed.png

_images/diagram.png
/\ S
o

..................................

_static/down.png

nav.xhtml

 Table of Contents

 		
 AABBTree - Axis-Aligned Bounding Box Trees

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

